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SIMULATION AND ANALYSIS OF CONTROLLED
MULTI-REPRESENTATIONAL REASONING PROCESSES

Tibor Bosse & Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

Catholijn M. Jonker & Nijmegen Institute for Cognition and Information,
Radboud Universiteit Nijmegen, Nijmegen, The Netherlands

Jan Treur & Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

& Multi-representational reasoning processes often show a variety of reasoning paths that can be
followed. To analyze such reasoning processes with special attention for differences between indivi-
duals, it is required (1) to obtain an overview of the variety of different possibilities and (2) to
address navigation and control within the reasoning process. This paper presents a simulation
model and a formal analysis method for the dynamics of a controlled reasoning process in which
multiple representations play a role. Reasoning strategies to navigate through the space of possible
reasoning states are modeled explicitly, and simulated. Simulation results are analyzed by software
tools on the basis of formalized dynamic properties. The variety of dynamic properties specified and
the variety of traces simulated provides an overview for the individual differences between subjects
that have been observed while solving multiplication problems.

Human reasoning is often considered a process proceeding by accumulat-
ing a number of reasoning steps from beginning to end. An underlying
assumption is that such a process can be analyzed by studying each such
step locally, in isolation from the rest of the reasoning process. Many
reports of experimental research focus on one-trial experiments where
the number of reasoning steps is limited to one or sometimes at most
two, e.g., Rips (1994) and Johnson-Laird (1983). However, a practical
reasoning process often is not a straightforward accumulation of isolated
steps. First, decisions to make a reasoning step may be not a local issue
at the time point of the decision, but depend on the history and goals of
the reasoning process as a whole. Second, often a multitude of reasoning
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paths is possible; only some of these actually reach the goal. Navigation and
control in the sense of making a coherent set of choices at different time
points to obtain one of the successful (and preferred according to one’s
own characteristics) paths is a nontrivial issue. Third, during the process
steps may be taken that lead to a dead end, such that the reasoning process
has to reconsider these steps, leading to a revision of the reasoning path.
These non-local aspects of a reasoning process require specific capabilities
beyond, for example, the capability to locally apply modus ponens or
modus tollens. Often some form of global reasoning planning and control
is performed. Decisions to make or revise a specific reasoning step are
made in the context of such a reasoning plan, which also has to be taken
into account as part of a reasoning state.

In many cases the same information can be represented in different
manners (e.g., in arithmetic, geometric, or material form). Moreover, both
internal (mental) and external (e.g., written or drawn) representations may
play a role. The distinction between mental and external representations is
also made in, e.g., Hegarty (2002). As the type of possible reasoning steps
may be different for different forms of representation, these differences of
representation have to be accounted for in different reasoning states. In
such cases the number of possible reasoning states is not very small, and,
as a consequence, the number of possible reasoning paths may be quite
large. Coherent controlled navigation involving non-local aspects of deci-
sions for reasoning steps is of major importance to deal with such a large
number of possibilities.

This article reports analysis and simulation of controlled multi-
representation reasoning processes, in which the issues put forward play
an important role. An analysis method for the dynamics of reasoning is
based on formal definitions of possible reasoning states and traces, and
dynamic properties of these traces are specified in the temporal trace lan-
guage (TTL) (Jonker and Treur 2002; Bosse et al. 2006). This analysis
method is supported by a software environment that is able to check traces
against specified dynamic properties. For simulation the component-based
agent design method DESIRE is used, cf. Brazier et al. (2000, 2002). Traces
generated by execution of a DESIRE model can be directly used as input of
the analysis software environment.

In the next section, the dynamic perspective on reasoning is discussed,
with a focus on formalization of the dynamics. Then, an example domain in
reasoning with multiple representations is introduced. The example
domain shows interaction between material, geometrical, and arithmetical
reasoning. It focuses on how to determine the outcome of multiplications
such as 23� 36, possibly using external arithmetic, geometric, or material
(based on multi-base arithmetic blocks (MAB) material, e.g., Booker et al.
[1997] and English and Halford [1995]) representations. We give a brief
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introduction of the component-based agent modeling method DESIRE
used for the simulation model. Then the design of the simulation model
is presented. Various simulation traces have been generated, of which
one example is briefly discussed. Then a number of dynamic properties
for this type of reasoning are identified and formalized using TTL. We
describe how these properties can be used to analyze existing (human or
simulated) reasoning processes and some other component-based reason-
ing models are discussed. Finally, the approach is summarized and the
contribution of the research presented in the paper is discussed.

FORMALIZING REASONING DYNAMICS

Analysis of the cognitive capability to perform reasoning has been
addressed from different areas and angles. Within cognitive science, the
two dominant streams are the syntactic approach (based on inference rules
applied to syntactic expressions, which is common in logic), e.g., Rips
(1994), and the semantic approach (based on construction of mental
models), e.g., Johnson-Laird (1983) and Yang and Johnson-Laird (1999).

Reasoning steps in natural contexts are usually not restricted to the
application of logical inference rules. For example, a step in a reasoning
process may involve translation of information from one representation
form (e.g., geometrical) into another one (e.g., arithmetical). Or an
additional assumption can be made, thus using a dynamic set of premises
within the reasoning process. Decisions made at specific points in time dur-
ing the process, for example, on which representations to use or which
assumptions to make, are an inherent part of the reasoning. Such reason-
ing processes or their outcomes cannot be understood, justified, or
explained without taking into account these dynamic aspects.

To formalize the dynamics of a reasoning process, traces are used. Reason-
ing traces are time-indexed sequences of reasoning states over a time frame; for
stepwise reasoning processes, the set of natural numbers as a time frame is an
appropriate choice. The set of all possible reasoning states defines the space
where the reasoning takes place. Reasoning traces can be viewed as trajec-
tories in this space, for which every (reasoning) step from one reasoning
state to the next one is based on an allowed transition. If the possible reason-
ing states and the allowed reasoning steps or transitions are characterized,
the set of proper reasoning traces can be defined as the set of all possible
sequences of reasoning states consisting only of allowed transitions.

Reasoning States

A reasoning state formalizes an intermediate state of a reasoning process.
The content of such a reasoning state usually can be analyzed according to
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different aspects or dimensions. A reasoning state can include both
internal (e.g., specific mental representations) and external elements
(e.g., written or drawn notes). For example, part of the state may contain
an external material representation, another part an external arithmetic
representation, and yet another part an internal geometric representation.
Furthermore, as pointed out in the introduction, control information has
to be taken into account in a reasoning state too. Accordingly, the reason-
ing state is structured as a composition of (i.e., a tuple of) a number of
parts, indexed by some set I. This index set includes different aspects or
views taken on the state, e.g., I is the set {control, extmaterial, extgeometric,
extarithmetic, intmaterial, intgeometric, intarithmetic}.

The set of reasoning states RS can be characterized as a Cartesian pro-
duct RS ¼ Pi2I RSi, where RSi is the set of all states for the aspect indicated
by i. For example, RSextgeometric may denote the set of all possible external
(drawn) geometric representations. This Cartesian product formalizes the
multi-dimensional space where the reasoning takes place. For a reasoning
state, which is a vector S ¼ ðSiÞi2 I2 RS in this space, the Si are called its
parts.

Reasoning Steps

A transition from one reasoning state to another reasoning state, i.e., an
element hS, S0i of RS�RS, formalizes one reasoning step; sometimes also
denoted by S! S0. Transitions differ in the set of parts that are involved.
The most complex transitions change all parts of the state in one step. How-
ever, within stepwise reasoning processes, usually transitions only involve a
limited number of parts of the state, e.g., one to three. In the current
approach we concentrate on this class of transition types.

For example, when a modification in the reasoning state is made solely
within an internal geometric representation, only the internal geometric
part of the state changes (geometric reasoning step):

intgeometric! intgeometric

Other types of transitions involve more than one part. For example, if an
external geometric representation is extended on the basis of an internal
geometric representation, then two parts of the state are involved: the
external geometric arithmetic part and the internal geometric part:

extgeometric� intgeometric! extgeometric

(e.g., the external geometric representation is extended or modified with
results from the internal geometric representation.)
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If control information is incorporated in the modeling approach, the
number of involved parts is even higher, since every transition involves
the control part; e.g.:

extgeometric� intgeometric� control! extgeometric

(e.g., the external geometric representation is extended or modified with
results from the internal geometric representation and some control
information.)

Reasoning Traces

Reasoning dynamics results from successive reasoning steps, i.e., suc-
cessive transitions from one reasoning state to another. Thus a reasoning
trace is constructed: a time-indexed sequence of reasoning states (ct)t2T,
where T is the time frame used (the natural numbers). A reasoning trace
can be viewed as a trajectory in the multi-dimensional space
RS ¼ Pi2I RSi of reasoning states. An example of such a reasoning trace will
be discussed later. Reasoning traces are sequences of reasoning states sub-
ject to the constraint that each pair of successive reasoning states in this
trace forms an allowed transition. A trace formalizes one specific line of
reasoning.

EXAMPLE DOMAIN: MULTIPLICATION

In this section, an example domain in multi-representation reasoning is
used to illustrate the approach put forward: How to determine the outcome
of multiplications such as 23� 36. When solving such multiplications,
humans may use multiple different representations in their reasoning,
depending on the approach used during the education. This example
focuses on the interaction between arithmetical, geometrical, and material
reasoning. Experiences on using such processes with children (8 to 9 years
old) in classrooms have been reported, e.g., by Dekker et al. (1982); see
also Hutton (1977). In addition, teaching quadratic equations can be
supported by such visualizations as discussed, e.g., by Bruner (1968,
pp. 59–63). For further explorations of the idea to use visualizations
in pre-algebraic reasoning, see Koedinger and Terao (2002).

Basic Skills

For the example domain, a number of basic skills have been identified
that can be used within the reasoning. In terms of reasoning steps (as dis-
cussed in the previous section), these basic skills consist of three types of
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one-component transitions of reasoning states and four transition types
involving two components.

. arithmetical reasoning steps: arithmetic! arithmetic

. geometrical reasoning steps: geometric! geometric

. material reasoning steps: material!material

. translations of an arithmetical representation into a geometrical
representation:

geometric� arithmetic! geometric

. translations of a geometrical representation into an arithmetical represen-
tation:

arithmetic� geometric! arithmetic

. translations of an arithmetical representation into a material represen-
tation:

material� arithmetic! material

. translations of a material representation into an arithmetical represen-
tation:

arithmetic�material! arithmetic

The idea is that more experienced reasoners possess more basic skills than
less experienced reasoning. Less experienced reasoners require only sim-
ple arithmetical steps. They can perform the more complicated steps via
the geometrical or material representation. The skills can be defined
(informally) in the form of the following transitions.

A. Arithmetic skills (arithmetic! arithmetic)

bs7. splitting a number in ‘‘tens’’ and single digits: 23 ¼ 20þ 3
bs8. translating a multiplication of two complex number to the multipli-

cation of the two sums of a ‘‘ten’’ and a single digit:

23� 36 ¼ ð20þ 3Þ � ð30þ 6Þ

bs9. multiplication of two numbers starting with a nonzero digit, followed
by zero or more zeros, such as 20� 8, 60� 30.
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bs10. applying the distribution law: (20þ 3)� (30þ 6) ¼ (20� 30)þ
(20� 6)þ (3� 30)þ (3� 6)

bs11. extracting partial multiplication problems from a complex
expression:

ð20� 30Þ þ ð20� 6Þ þ ð3� 30Þ þ ð3� 6Þ ¼> ð20� 30Þ

bs12. filling in the solution to a partial multiplication problem in a complex
expression

bs13. addition of a list of numbers of up to four digits, such as
600þ 120þ 90þ 18

bs14. concluding that the solution of the addition is the solution of the
initial multiplication problem

B. Geometric skills (geometric! geometric)

bs4. partitioning a rectangle in non-overlapping areas based on partition-
ings of its sides

C. Material skills (material!material)

bs19. placing blocks inside the frame of a rectangle

D. Translation skills (geometric� arithmetic! geometric)

bs1. drawing a rectangle with arithmetically given dimensions
bs2. partitioning a line segment according to a splitting of its length
bs3. determining the surface of a rectangle from the multiplication of the

lengths of its sides

E. Translation skills (arithmetic� geometric! arithmetic)

bs5. translating the area of a rectangle into the multiplication of the
lengths of its sides

bs6. translating the area of a combination of non-overlapping areas into the
sum of the areas

F. Translation skills (material� arithmetic!material)

bs15. building the frame of a rectangle with arithmetically given
dimensions

bs16. determining the surface of a group of identical blocks from the mul-
tiplication of the amount of blocks and the area of an individual block
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G. Translation skills (arithmetic�material! arithmetic)

bs20. translating the area of a group of identical blocks into the multi-
plication of the amount of blocks and the area of an individual block

bs23. translating the area of a combination of groups of different block
sizes into the sum of the areas of the groups

Notice that in this notation no difference is made between the internal
and the external elements of the reasoning states. However, the skills can
easily be extended with this information. For example, basic skill bs1 can
be extended in the two following ways.

. bs10. drawing a rectangle with arithmetically given dimensions on a piece
of paper

ðintgeometric� intarithmetic! extgeometricÞ

. bs100. imagining a rectangle with arithmetically given dimensions

ðintgeometric� intarithmetic! intgeometricÞ

A variety of (part of the) possible reasoning paths determined by these
transitions is depicted in a simplified manner in Figure 1. For the sake of
simplicity, transitions between geometric and material representations have
been left out. The numbers refer to basic skills. The boxes refer to (part of)
the reasoning states. For example, the transition labeled ‘‘4’’ refers to skill
bs4, i.e., partitioning a rectangle in non-overlapping areas, based on a
partitioning of its sides, and the transitions labeled ‘‘7’’ refer to skill bs7,
i.e., splitting a number in tens and digits.

Example Multi-Representational Reasoning Process

To illustrate the idea of the basic skills, Figure 2 presents a detailed
reasoning trace. The starting problem for this trace was the following:
‘‘What is the outcome of the multiplication 23� 36?’’ In this example, only
geometrical and arithmetical representations are used. The example corre-
sponds to a particular navigation path through Figure 1.

COMPONENT-BASED DESIGN OF AGENTS

The simulation of multi-representation reasoning described in this
paper has been developed using the component-based design environment
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DESIRE for agent systems (DEsign and Specification of Interacting Reason-
ing components); for the underlying principles, see Brazier et al. (2000;
2002). DESIRE distinguishes itself by the extensive possibilities to specify

FIGURE 1 Variety of reasoning paths.
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internal agent models, so that complex agents with sophisticated,
knowledge-intensive reasoning capabilities and behavior can be designed
as well. It has been found to be useful in a number of applications of agent
systems and reasoning systems within agents. Examples of such applications

FIGURE 2 Example reasoning trace.
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vary from BDI-agents (Brazier et al. 1999) and normative agents
(Castelfranchi et al. 2000) to reasoning models for reasoning by assump-
tion (Jonker and Treur 2003) and nonmonotonic reasoning (Engelfriet
and Treur 2003). In this section DESIRE is briefly explained, taken from
Brazier et al. (2000; 2002), where also more details can be found.

The DESIRE Modeling Approach

The development of an agent system is supported by graphical design
tools within the DESIRE software environment. Translation to an oper-
ational system is straightforward; the software environment includes
implementation generators with which formal specifications can be trans-
lated into executable code of a prototype system. In DESIRE, a design con-
sists of knowledge of the following three types: process composition,
knowledge composition, and the relation between process composition
and knowledge composition. These three types of knowledge are discussed
in more detail next.

Process composition identifies the relevant processes at different levels of
(process) abstraction, and describes how a process can be defined in terms
of (is composed of) lower level processes. Processes can be described at dif-
ferent levels of abstraction, for example, the process of the multi-agent sys-
tem as a whole, processes defined by individual agents and the external
world, and processes defined by task-related components of individual
agents. The identified processes are modeled as components. For each pro-
cess the input and output information types are modeled. The identified levels
of process abstraction are modeled as abstraction=specialization relations
between components: Components may be composed of other components
or they may be primitive. Primitive components may be either reasoning
components (i.e., based on a knowledge base) or components capable of
performing tasks such as calculation, information retrieval, and optimiza-
tion. These levels of process abstraction provide process hiding at each
level. The way in which processes at one level of abstraction are composed
of processes at the adjacent lower abstraction level is called process compo-
sition. This composition of processes is described by a specification of the
possibilities for information exchange between processes (static view on the
composition) and a specification of task control knowledge used to control
processes and information exchange (dynamic view on the composition).

Knowledge composition identifies the knowledge structures at different
levels of (knowledge) abstraction and describes how a knowledge structure
can be defined in terms of lower-level knowledge structures. The knowl-
edge abstraction levels may correspond to the process abstraction levels,
but this is often not the case. The two main structures used as building
blocks to model knowledge are information types and knowledge bases.
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Knowledge structures can be identified and described at different levels of
abstraction. At higher levels details can be hidden. An information type
defines an ontology (lexicon, vocabulary) to describe objects or terms, their
sorts, and the relations or functions that can be defined on these objects.
Information types can logically be represented in order-sorted predicate
logic. A knowledge base defines a part of the knowledge that is used in one
or more of the processes. Knowledge is represented by formulae in
order-sorted predicate logic, which can be normalized by a standard trans-
formation into rules. Information types can be composed of more specific
information types, following the principle of compositionality discussed
previously. Similarly, knowledge bases can be composed of more specific
knowledge bases. The compositional structure is based on the different
levels of knowledge abstraction distinguished and results in information
and knowledge hiding.

Each process in a process composition uses knowledge structures.
Which knowledge structures are used for which processes is defined by
the relation between process composition and knowledge composition.

Instead of designing each and every new agent application from
scratch, an existing generic model can be used. Generic models can be dis-
tinguished for specific types of agents, of specific agent tasks and of specific
types of multi-agent organization. The use of a generic model in an appli-
cation structures the design process. The acquisition of a conceptual model
for the application is based on the generic structures in the model. A model
can be generic in two senses.

. generic with respect to the processes or tasks

. generic with respect to the knowledge structures

Genericity with respect to processes or tasks refers to the level of process
abstraction: A generic model abstracts from processes at lower levels. A more
specific model with respect to processes is a model within which a number of
more specific processes are distinguished at a lower level of process abstrac-
tion. This type of refinement is called specialization. Genericity with respect to
knowledge refers to levels of knowledge abstraction: A generic model
abstracts from more specific knowledge structures. Refinement of a model
with respect to the knowledge in specific domains of application is refine-
ment in which knowledge at a lower level of knowledge abstraction is
explicitly included. This type of refinement is called instantiation.

Reuse, as such, reduces the time, expertise, and effort needed to design
and maintain system designs. Which components, links, and knowledge
structures from the generic model are applicable in a given situation
depends on the application. Whether a component can be used immedi-
ately, or whether instantiation, modification, and=or specialisation is
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required, depends on the desired functionality. Other existing (generic)
models can be used for specialization of a model; existing knowledge struc-
tures (e.g., ontologies, thesauri) can be used for instantiation. Which mod-
els and structures are used depends on the problem description: Existing
models and structures are examined, rejected, modified, specialized,
and=or instantiated in the context of the problem at hand.

The Generic Agent Model (GAM)

The characteristics of weak agency (Wooldridge and Jennings 1995a;
1995b) provide a means to reflect on the tasks an agent needs to be able
to perform. Proactiveness and autonomy are related to a self model, goals,
and plans. Reactivity and social ability are related to world model, agent
models, communication with other agents, and interaction with the exter-
nal world. The design of the generic agent model (GAM) in a component-
based approach entails consideration of the processes and knowledge an
agent needs to perform and the composition of related components and
knowledge structures.

Process composition within the generic agent model identifies the pro-
cesses within an agent at the highest level of abstraction, and the manner
in which they are composed to obtain the agent process (composition
relation). The processes modeled within the generic agent model are
depicted as components in Figure 3. The processes involved in controlling
an agent (e.g., determining, monitoring, and evaluating its own goals and
plans), but also the processes of maintaining a self model, are the task of
the component’s own process control (OPC). The processes involved in man-
aging communication with other agents are the task of the component
agent interaction management (AIM). Maintaining knowledge of other agents’
abilities and knowledge is the task of the component maintenance of agent
information (MAI). Comparably, the processes involved in managing interac-
tion with the external (material) world are the task of the component world
interaction management (WIM). Maintaining knowledge of the external
(material) world is the task of the component maintenance of world infor-
mation (MWI). The specific task for which an agent is designed (for
example, design, diagnosis, information retrieval), is modeled in the
component agent specific task (AST). Existing (generic) task models may
be used to further structure this component. In addition, a component
cooperation management (CM) may be distinguished for all tasks related to
social processes such as cooperation in a project or negotiation, e.g., Brazier
et al. (2000a) and Brazier et al. (2002a).

The four characteristics of weak agency are related to these compo-
nents in the following sense. Perception of the environment is performed
by world interaction management (managing the perception process),
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maintenance of world information and maintenance of agent information
(representation of perception information obtained from the environ-
ment). Actions in the world are managed by world interaction manage-
ment. Social actions are managed by the tasks agent interaction
management and cooperation management. The task cooperation man-
agement is not explained further in this chapter. Performing the agent’s
processes is initiated and coordinated by the task own process control; thus
the agent’s autonomous and proactive behavior is modeled.

A number of generic information types can be distinguished for the input
and output of the generic agent model (based on external concepts) and

FIGURE 3 Information exchange at the highest process abstraction level within the agent.
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for the generic processes within the agent (based on internal concepts). An
agent capable of communication with other agents may receive incoming
communication info and may send outgoing communication info. More-
over, the agent may observe and perform actions in the external (material)
world. The information type observation info models the observations that
are to be performed in the component external world. The information
type observation result info models the incoming results of observations.
The information type action info models the actions the agent performs.
In Table 1 an overview of the agent’s interface information types is given,
based on the external primitive agent concepts.

The information types that express communication information are
composed of information types on the subject of communication, and an
information type to specify the agent from, or to whom, the communi-
cation is directed.

The interface information types of the components within the agent
are listed in Table 2. Within the agent component, the component own
process control uses belief information on other agents and the external
(material) world as input. This information is modeled in the information
type belief info, which is composed of belief info on world and belief info
on agents. The output of the component own process control includes the
agent’s characteristics (modeled in the information type own characteris-
tics) used by the components agent interaction management and
world interaction management. In addition to this information type, the

TABLE 1 Specification of Interface Information Types of the Agent

Process Input information types Output information types

Agent incoming communication info
observation result info

outgoing communication info
observation info action info

TABLE 2 Specification of Interface Information Types Within the Generic Agent Model

Process Input information types Output information types

Own process control belief info own characteristics
agent interaction

management
incoming communication info

own characteristics belief info
outgoing communication

info
maintenance info

world interaction
management

observation result info
own characteristics belief info

observation info
action info

maintenance info
maintenance of

agent information
agent info agent info

maintenance of
world information

world info world info
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component agent interaction management also receives the incoming
communication received by the agent (and is forwarded directly to the
component agent interaction management), modeled in the input inter-
face in the information type incoming communication info, and world
and agent information, and modeled in the input information type belief
info. The output generated by the component agent interaction manage-
ment includes the output for the agent as a whole (outgoing communication
info) extended with maintenance info, which is composed of maintenance
info on agents and maintenance info on world (communicated information
on the world and other agents that needs to be maintained).

The component maintenance of agent information receives new infor-
mation on other agents (the agent’s beliefs on other agents) in its input
interface. These beliefs on other agents are made available to other compo-
nents in the output interface of the component maintenance of agent
information. Similarly, the component world interaction management
receives the agent’s characteristics in the input information type own char-
acteristics. Observation results are received by the agent (and forwarded
directly to the component world interaction management) in the input
interface type observation result info, in addition to information the agent
has about the world and agents in the information type belief info. The out-
put generated by the component world interaction management includes
the output for the agent as a whole (action info, observation info),
extended with maintenance info (information obtained from observation
of the world and other agents that needs to be maintained). The compo-
nent maintenance of world information receives new information on the
world (the agent’s beliefs on the world) in its input interface. Beliefs on
the world are available in the output interface of the component mainte-
nance of world information. More details on information types within
the generic agent model (GAM) can be found in Brazier et al. (2000).

Information exchange within the agent is specified by the information
links depicted as arrows in Figure 3. Observation results are transferred
through the information link observation result info to WIM from the
agent’s input interface to the component world interaction management.
In addition, this component receives belief information from the compo-
nent maintenance of world information through the information link
world info to WIM, and the agent’s characteristics from the component
own process control through the link own process info to WIM. The selec-
ted actions and observations (if any) are transferred to the output interface
of the agent through the information link observations and actions.

The component maintenance of world information receives (meta-)
information on observed world information from the component world
interaction management, through the information link observed world
info and meta-information on communicated world information (through
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the link communicated world info) from the component agent interaction
management. Epistemic information from maintenance of world
information, epistemic world info, is transferred to input belief info on
world of the components world interaction management, agent interaction
management, and own process control, through the information links
world info to WIM, world info to AIM, and world info to OPC.

Comparably the component maintenance of agent information receives
meta-information on communicated information from the component
agent interaction management, through the information link communi-
cated agent info and meta-information on observed agent information
(through the link observed agent info) from the component world interac-
tion management. Epistemic information, epistemic agent info, is output
of the component maintenance of agent information, and becomes input
belief info on agents of the components world interaction management,
agent interaction management, and own process control, through the infor-
mation links agent info to WIM, agent info to AIM, and agent info to OPC.

Comparison to Some Other Agent Modeling Approaches

The Concurrent MetateM framework is another modeling framework
for multi-agent systems, based on modal temporal logic; cf. Fisher (1995;
2005), Barringer et al. (1996) and Galton (2003; 2006). A comparison with
DESIRE is discussed for the structure of agents, inter-agent communi-
cation, and meta-level reasoning. Morerover, a comparison to object-
oriented approaches is discussed. For more extensive comparisons of
DESIRE to other approaches, see Mulder et al. (1998) and Shehory and
Sturm (2001).

For the structure of agents, in DESIRE, the knowledge structures that are
used in the knowledge bases and for the input and output interfaces of
components are defined in terms of information types, in which sort hier-
archies can be defined. Signatures define sets of ground atoms. An assign-
ment of the truth values true, false, or unknown to atoms is called an
information state. Every primitive component has an internal information
state, and all input and output interfaces have information states. Infor-
mation states evolve over time. Atoms are persistent in the sense that any
ground atom in a certain information state is assigned to the same truth
value as in the previous information state, unless its truth value has chan-
ged because of updating an information link. Concurrent MetateM does
not have information types; there is no predefined set of ground atoms
and there are no sorts. The input and output interface of an object consists
only of the names of predicates. Two-valued logic is used with a closed
world assumption, thus an information state is defined by the set of ground
atoms that are true.
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In a DESIRE specification of a multi-agent system, the agents are
(usually) subcomponents of the top-level component that represents the
whole (multi-agent) system, together with one or more components that
represent the rest of the environment. A component that represents an
agent can be a composed component: An agent process hierarchy is
mapped into a hierarchy of components. In a Concurrent MetateM model,
agents are modeled as objects that have no further structure: All its tasks
are modeled with one set of rules.

The communication between agents in DESIRE is defined by the infor-
mation links between them: Communication is based on point-to-point
or broadcast message passing. Communication between agents in Concur-
rent MetateM is done by broadcast message passing. When an object sends
a message, it can be received by all other objects. In addition to this, both
multi-cast and point-to-point message passing can be defined.

The compositional approach to agent design in this article has some
aspects in common with object-oriented design methods, e.g., Booch
(1994). However, there are differences as well. Examples of approaches
to object-oriented agent specifications can be found in, e.g., Aridor and
Lange (1998). A first interesting point of discussion is to what the differ-
ence is between agents and objects. Some tend to classify agents as different
from objects. For example, Jennings and Wooldridge (1998) compare
objects with agents on the dimension of autonomy in the following way:

‘‘An object encapsulates some state, and has some control over this state in
that it can only be accessed or modified via the methods that the object
provides. Agents encapsulate state in just the same way. However, we also
think of agents as encapsulating behaviour, in addition to state. An object
does not encapsulate behaviour: it has no control over the execution of
methods – if an object x invokes a method m on an object y, then y has
no control over whether m is executed or not – it just is. In this sense,
object y is not autonomous, as it has no control over its own actions. In
contrast, we think of an agent as having exactly this kind of control over
what actions it performs. Because of this distinction, we do not think of
agents as invoking methods (actions) on agents – rather, we tend to think
of them requesting actions to be performed. The decision about whether to
act upon the request lies with the recipient.’’

Some others consider agents as a specific type of objects that are able to
decide by themselves whether or not they execute a method (objects that
can say ‘‘no’’), and that can initiate action (objects that can say ‘‘go’’).

A difference between the component-based design method DESIRE
and object-oriented design methods in representation of basic functionality
is that, within DESIRE, declarative, knowledge-based specification forms
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are used, whereas method specifications (which usually have a more pro-
cedural style of specification) are used in object-oriented design. Another
difference is that, within DESIRE, the composition relation is defined in
a more specific manner: the static aspects by information links and the
dynamic aspects by (temporal) task control knowledge, according to a
pre-specified format. A similarity is the (re)use of generic structures:
generic models in DESIRE and patterns; cf. Gamma et al. (1994) in
object-oriented design methods, although their functionality and composi-
tionality are specified in different manners, as discussed previously.

SIMULATION MODEL

The simulation model1 for multi-representational reasoning is based on
the component-based agent modeling approach DESIRE, which was briefly
introduced previously; cf. Brazier et al. (2000; 2002). At the highest level of
abstraction, two components play a role in the system, i.e., the reasoning
agent (called Alan) and the external world. Figure 4 depicts an overview of
the components of the simulation model.

Alan can perform actions and observations executed in the external
world, and receive observation results as input from the external world.
After Alan generates a certain action to be performed (e.g., draw a rec-
tangle with sides 23� 36), this action is transferred to the external world
and executed there. The result of the action (e.g., a rectangle with corners
A, B, C, D, and sides 23� 36 drawn on a piece of paper) will occur, with a
certain delay, within the external world. Thus, the execution of physical
actions by the agent is modeled as part of the component external world.
Several kinds of physical actions are involved: writing things down (e.g.,
numbers), drawing pictures, and placing objects (e.g., blocks). In addition
to performing actions, Alan can proactively observe the world. The agent
does this by explicitly determining what aspects of the world it is interested
in: its observation focus. This focus is then transferred to the external
world, which in return provides the corresponding observation result.

Reasoning Agent

The approach used in this article assumes that for every action a mental
and a physical part can be distinguished and modeled (e.g., imagining a
rectangle with sides 23� 36 vs. actually drawing such a rectangle). Whilst
the external world is concerned with the physical parts of the actions, every-
thing that is represented within the agent is mental. Moreover, the different
representations used in the reasoning process (i.e., arithmetic, geometric,
material) should be modeled differently. To be able to make a clear distinc-
tion between these different concepts, different ontologies are used, e.g.,
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rectangleðA;B;C;D; 23; 36Þ denotes a specific rectangle in the world
(i.e., using a geometric representation), whereas entityðshapeð½�Þ,
parametersð23; 36ÞÞ denotes the internal representation of such as rec-
tangle. Likewise, multiplication(23, 36) represents a specific multiplication
problem in the world (i.e., using an arithmetic representation), whereas
entityðshapeð‘‘ X�Y ’’Þ;parametersð23; 36ÞÞ denotes the internal represen-
tation of such a multiplication. Internal representations can be created
on the basis of an observation, but also on the basis of internal reasoning.

The composition of the reasoning agent Alan is based on the generic
agent model as described in Brazier et al. (2000) and was briefly introduced
previously. Three of the generic agent components are used in our model,
namely world interaction management, maintenance of world information, and
own process control. The other generic agent components were not needed
within this model.

The task of the component maintenance of world information is to main-
tain a (partial) world model, i.e., a snapshot of the present world state.
In this domain, this world model is restricted to the observed information
about objects that the agent has manipulated itself, such as the numbers it
has written down. Moreover, since the agent does not necessarily have to
perform each intermediate step physically, some imaginary world model
must be maintained as well. This model describes the world as it would
be after the physical execution of some steps, without these steps actually
being performed. As both models contain information about a (possible)
state of the world, both are maintained by maintenance of world infor-
mation. An important issue is the amount of time that the world models
persist within the component. In the current model, this duration is very
short; thus, the component can be compared with part of the short-term
memory. The information enters, is (possibly) used by another component,
and very quickly disappears. Hence, whenever the information is needed
later on, it has to be created again (either by observation or by imagin-
ation). This loss of information is modeled by clearing the contents of
the component soon after it has entered. However, the duration of this
period can easily be modified.

According to the generic agent model, tasks of the component own pro-
cess control are the processes the agent uses to control its own activities (e.g.,
determining, monitoring, and evaluating its own goals and plans), but also
the processes of maintaining a self model. The way the tasks are performed
is described in detail in the next section.

Own Process Control

Own process control consists of four sub-components: goal determi-
nation, own characteristics, plan determination, and plan refinement; see
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Figure 4. These components are responsible for, respectively, determining
the agent’s goals, its own characteristics, planning the reasoning process at
an abstract level, and actually performing the reasoning process. The
details of how they work are described in this section.

Goal Determination
For the application in question, goal determination is a relatively simple

component. It contains information about the initial multiplication prob-
lem the agent desires to solve. The fact that the initial problem is repre-
sented here reflects the situation that the desire to solve this particular
problem has popped up within the agent’s mind spontaneously. However,
in many cases, the determination of goals is a more complex process.
Therefore, the component can easily be extended to simulate a more
dynamic form of goal determination (e.g., involving the possibility to
modify and drop goals).

Own Characteristics
The component own characteristics contains a self-model, which includes

several aspects. First, it includes (self-)information on the basic skills that
the reasoning agent thinks to possess. Note that this does not necessarily
mean that the agent indeed has all these skills. For instance, it is well poss-
ible that the agent believes to be able to apply the distribution law of arith-
metic, whilst during execution it turns out that it does not (i.e., the agent
overestimated itself). Also, the opposite is possible. In that case, an agent
possesses certain skills of which it does not know it has. As a consequence,

FIGURE 4 Overview of the components of the simulation model.
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it will never use these skills. In the case of the over-confident agent, when a
certain skill has failed (i.e., the agent planned to use it, but at the end, it
could not), own characteristics revises the self-knowledge of the agent by
asserting that it does not have the skill after all. Second, own characteristics
is used to store the agent’s profile with respect to its problem-solving strat-
egy for the multiplication problem. Two aspects are represented: (1) a list
of priorities among the different representations that can be used while
solving the problem (e.g., the profile ari-geo-mat indicates that the agent
prefers arithmetical representations to geometrical and material ones) and
(2) to what extent steps in the reasoning process have to be performed phy-
sically. This way, several types of agents can be modeled, varying from those
that write down every step to those that write down nothing. As a final
remark, notice that, although DESIRE offers the opportunity to dynami-
cally add changes in the specification (and thereby realize an open state
space), this has not been done within the current model.

Plan Determination
Before actually solving the problem, the reasoning agent makes an

abstract plan (e.g., a particular navigation route through Figure 1). Plan
determination is responsible for this planning process. Its input consists of
the agent’s own goal and characteristics. Based on this information, and
knowledge about pre- and post-conditions of the basic skills, plan determi-
nation explores the entire reasoning process at an abstract level. It uses
abstract knowledge about when a certain basic skill can be applied
(pre-conditions) and what the effect of this application will have (post-
conditions). The pre- and post-conditions are expressed in an abstract
way, e.g., they do not contain any numbers. While planning, plan determi-
nation continuously matches the current state of the explored plan against
the pre-conditions of all basic skills, in order to determine which skills are
applicable. It then uses its strategy profile as control knowledge, in order to
select one of the applicable skills. Subsequently, the skill is evaluated by
adding its (abstract) post-condition to the current state of the explored
plan. This way, the component constructs a complete list of seps to be
performed, which would solve the multiplication problem. Furthermore,
the component uses backtracking in situations where no more basic skills
are applicable. Finally, if no solution can be found at all, this is also indi-
cated. The sub-components of plan determination will be described later.

Plan Refinement
Abstract plans, generated by plan determination, are transferred to the

component plan refinement. This component, which consists of the sub-com-
ponents plan execution control, precondition acquisition initiation, and mental
action execution, is responsible for the refinement of the basic steps, i.e., it
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determines the specific mental and physical actions associated with a basic
step of the abstract plan (e.g., it refines bs4 to bs4m). Moreover, it executes
the detailed mental actions associated with the basic steps. This is done by
repeating the following activities. First, plan execution control selects the
first step of the (remaining) plan to be executed. Second, precondition
acquisition initiation determines what observations have to be made to pro-
vide the agent with the necessary information for the application of the
selected step. For instance, if the selected step is to draw a rectangle, it is
important to know the dimensions of the rectangle. Third, as soon as this
information has been obtained, mental action execution creates a mental
image of the result of the application of the mental action (with instan-
tiated variables, e.g., ‘‘a rectangle with sides 23� 36,’’ denoted by
entityðshapeð½�Þ;parametersð23; 36ÞÞÞ. This mental image is then stored
within maintenance of world information. Within this step, if necessary,
ontology mapping is performed. For example, in case an action is executed
in which a translation needs to be made from one representation to
another (see the translation skills), then this component makes sure that
the result of the action is represented using the correct ontology. After that,
plan execution control decides whether to perform the associated physical
action as well, depending on the agent0s own characteristics. Then, the physi-
cal action either is or is not executed (within the external world component),
after which the next step of the plan is treated by plan execution control.
Finally, if the agent is unable to perform an action that it had planned to
do because it lacks either the mental or the physical skill for that action, noti-
fication with the name of the skill that failed is transferred to own character-
istics. As a consequence, this latter component will revise its self-model,
so that plan determination can construct a new plan more adequately.

Plan Determination

Plan determination consists of the components plan maintenance, step
determination, step effectuation, and step backtracking. Plan maintenance keeps
track of all kinds of information concerning the ‘‘current’’ state of the
explored reasoning process, such as the (abstract) steps that have been
applied successfully, those that have failed and those that have not been
applied yet. Step determination decides the next step to be added to the
current plan in three phases. First, it determines which steps are currently
applicable, by matching the preconditions of abstract steps against the cur-
rent state of the exploration. Second, based on the applicable steps and the
agent0s strategy profile, it decides whether it will make an arithmetic, geo-
metric, or material step. And third, based on the chosen representation, it
will select one single step. The components responsible for the three
phases are called, respectively, candidate step generation, selection criteria
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determination, and step selection. Finally, the selected step is passed to step
effectuation. However, if, independently of the representation, no steps
are applicable, this failure is indicated, so that the backtracking component
can become active. Step effectuation explores the execution of the selected
abstract step by adding the post-condition of the step to the current state of
the simulation. Step backtracking becomes active whenever no more steps
are applicable and uses a standard backtracking algorithm.

Example Simulation Trace

Using the model described, a number of simulations have been per-
formed. An example of a resulting simulation trace is shown in Table 3.
In this trace, both geometric and arithmetic skills are used to solve the
problem, although there is a preference for the geometric skills. More
simulation traces are included in Appendix A.

As can be seen in Table 3, the trace first contains a description of the
characteristics of the agent (step 0), then the arithmetic problem is men-
tally represented (step 1) and the abstract plan is produced (step 2).
Due to the strategy profile of the agent, the plan shows as many basic geo-
metric skills as possible (this corresponds to a route through the left part of
Figure 1). Every step is represented both mentally and physically, corre-
sponding to the agent0s characteristics. Since the agent has all skills both
in abstracto and in concreto, no backtracking was necessary either during
plan determination or plan execution.

Note that, although a large variety of reasoning paths is possible
through the space of different reasoning states (see also Figure 1), during
simulation, specific control knowledge is used to guide the reasoning trace
in a deterministic manner. This control knowledge, which is used within
the component step determination, basically consists of the agent0s strategy
profile, which states, for example, whether the agent prefers geometric
representations over arithmetic representations. As a result, only one trace
is generated per combination of initial parameter settings.

DYNAMIC PROPERTIES

To specify properties on the dynamics of a reasoning process, the tem-
poral trace language (TTL) used by Jonker and Treur (2002) is adopted.
This is a language in the family of languages to which also situation calculus
(Reiter 2001), event calculus (Kowalski and Sergot 1986), and fluent calcu-
lus (Hölldobler and Tielscher 1990) belong; see also Galton (2003; 2006)
for more background in temporal modeling languages. In short, in TTL,
it is possible to express that, in a given trace, at a certain point in time,
the reasoning state has a certain (state) property. Moreover, it is possible
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TABLE 3 Example Simulation Trace

Step Information derived

0 strategy profile: geo-ari-mat
0 available abstract skills: all skills
0 available mental skills: all skills
0 available physical skills: all skills
0 represent physically: all steps
1 mental representation(arithmetic, entity(shape(‘‘X � Y’’), parameters(23, 36)))
2 plan([bs1, bs7, bs2, bs4, bs5, bs9, bs3, bs6, bs13, bs14])
3 is represented in world(arithmetic, multiplication(23, 36))
4 mental representation(geometric, entity(shape(‘‘[]’’), parameters(23, 36)))
5 is represented in world(geometric, rectangle(‘A’, ‘B’, ‘C’, ‘D’, 23, 36))
6 mental representation(arithmetic, entity(shape(‘‘X ¼ X1þX2’’), parameters(36, 30, 6)))
6 mental representation(arithmetic, entity(shape(‘‘X ¼ X1þX2’’), parameters(23, 20, 3)))
7 is represented in world(arithmetic, split(36, 30, 6))
7 is represented in world(arithmetic, split(23, 20, 3))
8 mental representation(geometric, entity(shape(‘‘-’’), name(‘A’, ‘B’), parameters(20, 3)))
8 mental representation(geometric, entity(shape(’’-’’), name(‘A’, ‘D’), parameters(30, 6)))
9 is represented in world(geometric, split(‘A’, ‘B’, 20, 3))
9 is represented in world(geometric, split(‘A’, ‘D’, 30, 6))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A11’), parameters(20, 30)))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A12’), parameters(20, 6)))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A21’), parameters(3, 30)))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A22’), parameters(3, 6)))
11 is represented in world(geometric, area(‘A11’, 20, 30))
11 is represented in world(geometric, area(‘A12’, 20, 6))
11 is represented in world(geometric, area(‘A21’, 3, 30))
11 is represented in world(geometric, area(‘A22’, 3, 6))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(3, 6)))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(3, 30)))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(20, 6)))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(20, 30)))
13 is represented in world(arithmetic, partial multiplication(‘A11’, 20, 30))
13 is represented in world(arithmetic, partial multiplication(‘A12’, 20, 6))
13 is represented in world(arithmetic, partial multiplication(‘A21’, 3, 30))
13 is represented in world(arithmetic, partial multiplication(‘A22’, 3, 6))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(3, 6, 18)))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(3, 30, 90)))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(20, 6, 120)))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(20, 30, 600)))
15 is represented in world(arithmetic, multiplication solution(3, 6, 18))
15 is represented in world(arithmetic, multiplication solution(3, 30, 90))
15 is represented in world(arithmetic, multiplication solution(20, 6, 120))
15 is represented in world(arithmetic, multiplication solution(20, 30, 600))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A11’),

area with number(600)))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A12’),

area with number(120)))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A21’),

area with number(90)))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A22’),

area with number(18)))

(Continued)
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to relate such state properties at different points in time. More details
about TTL can be found in Jonker and Treur (2002) and Bosse et al.
(2006); for the process from informal to formal TTL-specifications, see also
Herlea et al. (2005).

As an example, the following (global) property of a reasoning trace c is
considered, which expresses that all multiplication problems in two digits
eventually will be solved.

GP1 (successfulness)

At any point in time t,
if in the reasoning state in trace c at t an arithmetic representation of a

multiplication problem for numbers x and y < 100 is present,
then a time point t0 � t exists such that in the reasoning state in c at t0 an

arithmetic representation of a solution z of this multiplication problem
with z ¼ x � y is included.

The formalization of this property in TTL is as follows.

8t 8x; y < 100 stateðc; t; arithmeticÞj¼¼ multiplication problemðx; yÞ
) 9t0 � t 9z z ¼ x � y & stateðc; t0; arithmeticÞj¼¼

is solution for multiplication ofðz; x; yÞ

Note that, for simplicity, no maximal allowed response time has been speci-
fied. If desired, this can be simply added by putting a condition t0 � r in the
consequent with r the maximal response time. Similarly, other variants of
overall properties can be specified, for example, expressing that, within
the trace, all multiplication problems will be solved, without using any geo-
metric or material representations. Moreover, instead of the arithmetical
part of the reasoning state (arithmetic), again the specific internal or

TABLE 3 Continued

Step Information derived

17 is represented in world(geometric, area with number(‘A11’, 600))
17 is represented in world(geometric, area with number(‘A12’, 120))
17 is represented in world(geometric, area with number(‘A21’, 90))
17 is represented in world(geometric, area with number(‘A22’, 18))
18 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y’’), parameters(600, 120,

90, 18)))
19 is represented in world(arithmetic, addition(600, 120, 90, 18))
20 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y ¼ Z’’), parameters(600, 120,

90, 18, 828)))
21 is represented in world(arithmetic, addition solution(600, 120, 90, 18, 828))
22 mental representation(arithmetic, entity(shape(‘‘XX�YY ¼ ZZ’’), parameters(23, 36, 828)))
23 is represented in world(arithmetic, multiplication solution(23, 36, 828))
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external arithmetical part (intarithmetic or extarithmetic) can be used, for
example, when expressing that only internal arithmetical representations
are used. In the remainder of this article, only the informal notation will
be used for the properties.

Milestone Properties

Within the overall reasoning process, a number of milestones can be
defined and properties can be identified that express whether the process
from one milestone to another one has been performed properly. With
respect to the geometrical reasoning, two intermediate milestones were
defined: a reasoning state in which the problem has been represented in a
geometric representation and has been decomposed geometrically (after
step 4 in the example trace), and a reasoning state in which a geometric
representation with numbers in the areas occurs, i.e., in which the subpro-
blems have been solved (after step 7 in the example trace). Accordingly,
the following milestone properties have been formulated.

MP1

At any point in time t,
if in the reasoning state in trace c at t an arithmetic representation of a

multiplication problem for numbers x and y < 100 is present,
then a time point t0 � t exists such that in the reasoning state in c at t0 a

geometric representation of a rectangle ABCD is included with points
P on AB and Q on AD, with jABj ¼ x and jADj ¼ y

and this rectangle is partitioned into four areas A11, A12, A21, A22 by two
lines PP0==AD and QQ0==AB with P0 on CD and Q0 on BC with
jAPj ¼ x1; jPBj ¼ x2; jAQj ¼ y1, and jQDj ¼ y2, where x1, y1 is the
10-part of x, resp. y, and x2, y2 is the digit part of x, resp. y.

Here, jABj is the length of AB, and == is ‘‘in parallel with.’’

MP2

At any point in time t,
if in the reasoning state in trace c at t a geometric representation of a

rectangle ABCD is included with points P on AB and Q on AD, with
jABj ¼ x and jADj ¼ y,

and this rectangle is partitioned into four areas A11, A12, A21, A22 by
two lines PP0==AD and QQ0==AB with P0 on CD and Q0 on BC
with jAPj ¼ x1, jPBj ¼ x2, jAQj ¼ y1, and jQDj ¼ y2, where x1, y1 is the
10-part of x, resp. y, and x2, y2 is the digit part of x, resp. y,
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then a time point t0 � t exists such that in the reasoning state in c at t0 in
each of these areas Aij a number zij is represented which equals xi*yj.

MP3

At any point in time t,
if in the reasoning state in trace c at t a geometric representation of a

rectangle ABCD is included with jABj ¼ x and jADj ¼ y,
and this rectangle is partitioned into four nonoverlapping rectangle areas

A11, A12, A21, A22,
and in each of these areas Aij a number zij is represented which equals

xi * yj, where x ¼ x1þ x2, and y ¼ y1þ y2,
then a time point t0 � t exists such that in the reasoning state in c at t0 an

arithmetic representation of a solution z with z ¼ x*y of the multi-
plication problem (x, y) is included.

Local Properties

In this section, a number of properties are identified that characterize the
reasoning in a more local manner: Each property characterizes one reasoning
step. For the sake of simplicity, for the example, reasoning process persistence
of representations in reasoning states over time is assumed, so that persistence
does not need to be formulated within each of the properties.

LP1 (arithmetic-geometric)

At any point in time t,
if in the reasoning state in trace c at t an arithmetic representation of a

multiplication problem for numbers x and y < 100 is present,
then a time point t0 � t exists such that in the reasoning state in c at t0 a

geometric representation of a rectangle ABCD with jABj ¼ x and
jADj ¼ y is included.

This dynamic property expresses that in reasoning trace c, if an arithmeti-
cally represented multiplication problem occurs, this eventually is trans-
lated into a geometric representation. The formalization of this
property in TTL is as follows.

8t 8x; y < 100 stateðc; t;arithmeticÞj¼¼multiplication problemðx; yÞ
) 9t0 � t 9A;B;C;D

stateðc; t0;geometricÞj¼¼ rectangleðA;B;C;DÞ& jABj ¼ x& jADj ¼ y

Further local properties are the following (not in any particular order).
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LP2 (arithmetic-arithmetic)

At any point in time t,
if in the reasoning state in trace c at t an arithmetic representation of a

multiplication problem for numbers x and y < 100 is present,
then a time point t0 � t exists such that in the reasoning state in c at t0 an

arithmetic representation of a splitting of the numbers x and y in ‘‘tens’’
and digits occurs, i.e., x ¼ x1þ x2, y ¼ y1þ y2 with x1, y1 multiples of 10
and x2, y2 < 10.

LP3 (arithmetic-arithmetic)

At any point in time t,
if the reasoning state in trace c at t contains an arithmetic representation of

a multiplication problem for (x, y), with x, y multiple of 10 or less
than 10,

then a time point t0 � t exists such that in the reasoning state in c at t0 an
arithmetic representation of a solution z with z ¼ x * y for this multipli-
cation problem for (x, y) is included.

LP4 (arithmetic-arithmetic)

At any point in time t,
if in the reasoning state in trace c at t an arithmetic representation of an

addition problem for a finite list z1,. . . , zn of numbers of up to 4 digits
is included,

then a time point t0 � t exists such that in the reasoning state in c at t0 a
solution z ¼ R1� i�n zi of the addition problem is included.

LP5 (arithmetic-geometric)

At any point in time t,
if in the reasoning state in trace c at t an arithmetic representation of a

splitting of the numbers x and y occurs, i.e.,

x ¼ x1 þ x2; y ¼ y1 þ y2;

then a time point t0 � t exists such that in the reasoning state in c at t0 a geo-
metric representation of a rectangle ABCD with jABj ¼ x and jADj ¼ y
is included with points P on AB and Q on AD such that jAPj ¼ x1,
jPBj ¼ x2, jAQj ¼ y1, and jQDj ¼ y2.
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LP6 (geometric-geometric)

At any point in time t,
if in the reasoning state in trace c at t a geometric representation of a

rectangle ABCD is included with points P on AB and Q on AD,
then a time point t0 � t exists such that in the reasoning state in c at t0 the

rectangle ABCD is partitioned into four areas A11, A12, A21, A22 by two
lines PP0==AD and QQ0==AB with P0 on CD and Q0 on BC.

LP7 (geometric-arithmetic)

At any point in time t,
if in the reasoning state in trace c at t a geometric representation of a rec-

tangle ABCD with jABj ¼ x and jADj ¼ y is included with points P on
AB and Q on AD such that

jAPj ¼ x1; jPBj ¼ x2;

jAQj ¼ y1; and jQDj ¼ y2;

and this rectangle is partioned into four areas A11, A12, A21, A22 by two lines
PP0==AD and QQ0==AB with P0 on CD and Q0 on BC,

then a time point t0 � t exists such that in the reasoning state in c at t0 arith-
metic representations of multiplication problems for (x1, y1), (x1, y2),
(x2, y1), and (x2, y2) are included.

LP8 (geometric and arithmetic-geometric)

At any point in time t,
if in the reasoning state in trace c at t a geometric representation of a

rectangle ABCD is included with points P on AB and Q on AD,
and this rectangle is partioned into four areas A11, A12, A21, A22 by two lines

PP0==AD and QQ0==AB with P0 on CD and Q0 on BC,
and arithmetic representations of solutions z11, z12, z21, z22 for the

multiplication problems for ðjAPj; jAQjÞ; ðjAPj; jQDjÞ; ðjPBj; jAQjÞ, and
ðjPBj; jQDjÞ are included,

then a time point t0 � t exists such that in the reasoning state in c at t0 within
the geometric representation in each area Aij, the number zij is
represented.
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LP9 (geometric-arithmetic)

At any point in time t,
if in the reasoning state in trace c at t a geometric representation of a

rectangle ABCD is included, which is partioned into a number of areas
A1, . . . , An,

and within each of these areas Ai a number zi is represented,
then a time point t0 � t exists such that in the reasoning state in c at t0 an

arithmetic representation of an addition problem for z1, . . . , zn is
included.

LP10 (geometric and arithmetic-arithmetic)

At any point in time t,
if in the reasoning state in trace c at t a geometric representation of a rec-

tangle ABCD is included with jABj ¼ x and jADj ¼ y that is partitioned
into a number of nonoverlapping areas A1, . . . , An,

and within each of these areas Ai the number zi is represented,
and an arithmetic representation of a solution z of the addition problem

for z1,. . . , zn is included,
then a time point t0 � t exists such that in the reasoning state in c at t0 an

arithmetic representation of a solution z with z ¼ x�y of the multipli-
cation problem (x, y) is included.

DYNAMICS ANALYSIS

In this section, it is described how the dynamic properties can be used
for the analysis of existing reasoning processes.

Logical Relationships

A number of logical relationships have been established between the
properties mentioned. First, the three milestone properties together imply
the global property:

MP1 & MP2 & MP3) GP1 ð0Þ
Next, each of these milestone properties is implied by a number of local
properties.

LP1 & LP2 & LP5 & LP6)MP1 ð1Þ

LP3 & LP7 & LP8)MP2 ð2Þ

LP4 & LP9 & LP10)MP3 ð3Þ
These logical relationships can be depicted as an AND-tree; see Figure 5.
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Identification of such logical relationships can be helpful in the analysis
of errors within a given reasoning trace. For example, in case of a non-
satisfactory reasoning trace, it can first be checked whether GP1 holds. If this
global property does not hold, the three properties MP1, MP2, and MP3 can
be checked. Given the logical relationship (0), at least one of them will be
found not to hold. This pinpoints the cause of the error in part of the pro-
cess, say MP3. Next, (only) the local properties relating to MP3 are checked,
i.e., LP4, LP7, LP10, and LP11. Again, due to (3), one of them will be found
not to hold, which localizes the cause of the error. Notice that this diagnostic
process is economic in the sense that all the subtrees under MP1 and MP2 are
not examined, as long as there is no reason for it.

Dynamic Analysis Method

Based on the idea of logical relationships between properties, a general
analysis method for the dynamics of reasoning processes can be formu-
lated. This analysis method comprises the following steps.

1. Identify the different dimensions or components of reasoning states.
2. Determine the different types of transitions.
3. Identify relevant dynamic properties for the reasoning.

a. For the process as a whole (global properties)
b. For milestones within the process
c. For reasoning steps (local properties)

4. Determine logical relationships between the different dynamic properties,
in an AND-tree form, e.g.,

a. Local properties imply a milestone property, and
b. Milestone properties imply a global property.

FIGURE 5 Logical relationships between dynamic properties.
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5. For a given reasoning trace, check which of the dynamic properties hold
and which do not hold. This can take the form of a diagnosis following
the tree structure of the relationships between the dynamic properties. A
software environment is available to support this checking process.

For the case at hand, more than 70 dynamic properties have been specified,
varying from global properties for the overall reasoning process to more
local properties. The idea is that some of these properties are of a general
nature (i.e., they can be used to assess whether a trace qualifies as a proper
reasoning trace), whereas the other properties are used to characterize the
different types of possible traces (i.e., they are used to identify individual dif-
ferences). A large number of automated checks have been performed,
thereby checking dynamic properties, as described in the previous section,
against simulated traces as shown earlier to reveal which properties hold
for which traces. The results were in line with our expectations; for example,
in the traces where all basic skills are present (e.g. the trace in Table 3), all
properties of a general nature (such as the successfulness property GP1)
turned out to hold. This validates the correctness of the simulation model,
at least for the given traces. Likewise, in traces where the strategy profile
described a preference for arithmetical representations, properties such as
‘‘if possible, only arithmetic representations are used’’ are satisfied.

In addition, note that the automated checker can also take empirical
reasoning traces as input. Using this approach, in future research it will
be checked which properties hold for empirical data, thereby supporting
the comparison of human reasoning with simulated reasoning.

Note that the type of checks of dynamic properties on traces that are per-
formed here are not based on the technique in the literature called model
checking (e.g., Clarke et al. [2000]). To perform model checking of dynamic
properties, the state space explosion problem has to be addressed, since in
model checking all possible traces have to be explored. However, checking
properties not on all possible traces, but only on one trace, or a given limited
set of traces, as done in this article, is much easier. Therefore, in our case, the
state space explosion problem does not occur, and checks are easy to per-
form. Moreover, in this case, the language for the dynamic properties can
also be more expressive, such as the sorted predicate logic temporal trace
language (TTL) described in this article, which is much more expressive
than the propositional modal logic languages used in model checking.

OTHER EXAMPLES OF COMPONENT-BASED
REASONING MODELS

In this section, some other applications of DESIRE to design compo-
nent-based reasoning models are briefly described. First, a model for
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reasoning by assumption is briefly described. Next, three other reasoning
models will be summarized: for nonmonotonic reasoning, for BDI-reason-
ing, and for normative reasoning.

In Jonker and Treur (2003) a component-based model for reasoning by
assumption can be found; this will be explained in some more detail.
Reasoning by assumption incorporates reasoning with and about assumptions.
Reasoning about assumptions can be considered as a form of
meta-reasoning. The agent reasons about a set of assumptions when deciding
for them to be assumed for a while (reasoning about assumptions). After
making assumptions, the agent derives which facts are logically implied
by this set of assumptions (reasoning with assumptions). The derived facts
may be evaluated; based on this evaluation, some of the assumptions may
be rejected and=or a new set of assumptions may be chosen (reasoning
about assumptions). As an example, if an assumption has been chosen,
and the facts derived from this assumption contradict information
obtained from a different source (e.g., by observation), then the assump-
tion is rejected and the converse assumed.

A generic reasoning model2 behind this pattern of reasoning has been
designed in the component-based design method DESIRE; cf. Brazier et al.
(2000; 2002). This formally specified design has been automatically trans-
lated into a software program capable of simulating the reasoning process.
The reasoning model consists of four basic (primitive) components:
external world, observation result prediction, assumption determination,
and assumption evaluation (see Figure 6). The component external
world contains the world state and is used to execute observations. The
component observation result prediction reasons with assumptions.

FIGURE 6 Architecture of the simulation model.
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The two components assumption determination and assumption
evaluation reason about assumptions (they perform the meta-reasoning).
Information is exchanged between the components where necessary.

The component assumption determination performs meta-reasoning to
derive which assumption to make. The knowledge specified for this compo-
nent expresses a form of heuristic knowledge able to generate assumptions
for the different situations. It is taken into account whether or not an
assumption already has been considere before (i.e., was an assumption ear-
lier), to avoid repetition. The component observation result prediction takes
an assumption and derives from this assumption what should be expected
as observations in the world, for example, using causal knowledge. The
component assumption evaluation, based on generic knowledge, compares
predictions and observations, and where these are conflicting, rejects the
underlying assumption; see the first generic rule. A second functionality
is to determine which observations have to be made, namely, those for
which predictions exist; this is specified in the second generic rule.

if assumed(HYP: INFO ELEMENT, S: SIGN)
andpredicted for(OBS: INFO
ELEMENT, S1:SIGN, HYP: INFO ELEMENT,

S: SIGN)
andobservation result(OBS: INFO ELEMENT, S2:SIGN)
andS1 6¼ S2

then rejected(HYP: INFO ELEMENT, S: SIGN)
andhas been considered(HYP: INFO ELEMENT, S: SIGN)

if predicted for(OBS : INFO ELEMENT, S1: SIGN, HYP: INFO ELEMENT,
S2: SIGN)
then to be observed(OBS : INFO ELEMENT)

The agent reasoning model described here has been used to model
reasoning processes based on assumption, such as diagnosis (Brazier et al.
2000b) and solving reasoning puzzles (Jonker and Treur 2003). More
details can be found in the references.

Furthermore, in Engelfriet and Treur (2003), a generic reasoning sys-
tem is described that can be used to perform non-motonic reasoning. It
can take any non-motonic logical theory and perform reasoning based
on that theory. It is a rather complex component-based reasoning system,
which has been described in detail in Engelfriet and Treur (2003).

Moreover, in Brazier et al. (1999), a component-based model for a BDI-agent
is described. Main components are belief determination, desire determination,
and intention determination. For more details, see the reference mentioned.
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Finally, in Castelfranchi et al. (2000), a component-based model for a
normatively reasoning agent is shown. The agent model, built on top of
a BDI-model, deliberates about its options and involves normative criteria
in the generation and selection of desires and intentions. For more details,
see the reference mentioned.

DISCUSSION

Analysis of the cognitive capability to perform reasoning has been
addressed from different areas and angles. Within cognitive science, the
two dominant streams are the syntactic approach (based on inference rules
applied to syntactic expressions, as common in logic), e.g., Rips (1994),
and the semantic approach (based on construction of mental models),
e.g., Johnson-Laird (1983). In experimental work for these approaches,
reasoning processes usually are studied by focusing on reasoning steps in
isolation, by means of one-trial experiments. More extensive reasoning pro-
cesses involving a number of steps that are tuned to each other require
coherent controlled navigation. The current article reports analysis and
simulation of such a reasoning process.

Reasoning with multiple representations can be quite useful, as opera-
tions can be available for manipulation of one type of representation but
not for another type. In the case study on multiplication addressed here,
it is possible to use geometrical operations to find the number that is the
product of two given numbers. If a multiplication problem to be solved is
offered in arithmetical form, then a number of translations between repre-
sentations have to be made, from arithmetical to geometrical representation
and back. Such translations are in fact a special case of ontology mappings.
For example, numbers a and b to be multiplied are mapped onto line seg-
ments AB and AC, or the area of a rectangle ABCD is mapped onto a num-
ber c. In Figure 2, in steps 1, 3, 5, 7, and 8, such translations take place. In
the simulation models, such mappings have been built-in. They are part of
the domain knowledge. Also, in other application domains to be addressed,
these ontology mappings have to be acquired to let a model like this work. If
they are not available, then the approach cannot work.

The analysis method for the dynamics of reasoning processes used in this
article was adopted from Jonker and Treur (2002) and validated on the basis of
reports from experiments with 8 to 9-year-old children in classrooms in the
Netherlands (Dekker et al. 1982). A similar report has been made by Hutton
(1977). The current article shows how an analysis of these dynamics can be
made using traces consisting of sequences of reasoning states including con-
trol information over time to describe controlled reasoning processes. It is
shown for the example reasoning pattern, how characterizing dynamic proper-
ties can be identified. Furthermore, the agent modeling approach DESIRE has
been used to specify and implement a simulation model, and other software
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tools have been used to automatically check which dynamic properties hold
for which simulated traces. In addition, these software tools can be used to
check which properties hold for empirical data, thereby supporting the com-
parison of human reasoning with simulated reasoning. The variety of dynamic
properties specified and the variety of traces simulated provides an overview
for the individual differences between subjects that have been observed while
solving multiplication problems. For example, using our formalization, those
with an emphasis on external arithmetic representations are neatly dis-
tinguished from those who use external material representations where poss-
ible. In the analysis the notion of reasoning strategy was addressed,
incorporating such differences in skill and preference. Due to the composi-
tional structure of the reasoning state, it was not difficult to extend a reasoning
state with a component for control information.

Note that the modeling approach used in this article makes a clear dis-
tinction between generic and domain-specific aspects. This makes it rela-
tively easy to plug in a different domain in multi-representational
reasoning. For example, the domain can be modified to an example for
children of 13 or 14 years of age to support algebra by geometric visualiza-
tions, e.g., the algebraic identity (aþb)2 ¼ a2þ 2abþb2 interpreted as the
area of a partitioned square of (aþb)� (aþb) in relation to areas of its
parts: a square of a� a, a square of b�b, and two rectangles of a�b.

To make it feasible to perform model checking (e.g., Clarke et al.
[2000]) of dynamic properties, the state space explosion problem has to be
addressed. In the first place, expressivity of the language for these dynamic
properties has to be sacrificed to a large extent. However, checking proper-
ties on a given set of traces of practical size (instead of all theoretically poss-
ible traces), obtained empirically or by simulation, as done in this article, is
not full model checking, and therefore computationally much cheaper.
Thus, in our case, the state space explosion problem does not occur, and
the language for the properties to be checked can be more expressive, such
as the sorted predicate logic temporal trace language (TTL) described in
this article. Note that in this way no logical consequence relations between
properties are found, but only that properties hold (or not) for the given
set of traces. This is a difference not only to model checking but also to the-
orem proving. The fact that the properties hold for the given set of traces
depends on this set and therefore not a general logical theorem as aimed
for in model checking and theorem proving. That explains why the algor-
ithm used in our case avoids the combinatorial problems of both model
checking and theorem proving: It has a more modest aim to achieve.

With respect to future work, further experiments will be conducted, in
which also a focus is more explicitly on the control of the reasoning. For
example, are subjects able to explain why at a point in time a translation
to a geometric representation is made? Are think-aloud protocols involving
control information a reliable source of further analysis? In addition, future
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work will explore the possibility to reuse the current simulation model in
other cognitive domains.
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NOTES

1. A Complete specification of the model (with clickable components) can be found at www.cs.vu.nl/
�wai/GTM/rmr/.

2. A complete specification of the model (with clickable components) can be found at www.cs.vu.nl/
�wai/GTM/assumption/assumption fixed tc 2WP 07.

APPENDIX A. SIMULATION TRACES

This Appendix contains a number of simulation traces that were gener-
ated on the basis of the model described in the section called ‘‘Simulation
Model.’’
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TRACE 1

Step Information derived

0 strategy profile: geo-ari-mat
0 available abstract skills: all skills
0 available mental skills: all skills
0 available physical skills: all skills
0 represent physically: all steps
1 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(23, 36)))
2 plan([bs1, bs7, bs2, bs4, bs5, bs9, bs3, bs6, bs13, bs14])
3 is represented in world(arithmetic, multiplication(23, 36)))
4 mental representation(geometric, entity(shape(‘‘[]’’), parameters(23, 36)))
5 is represented in world(geometric, rectangle(‘A’, ‘B’, ‘C’, ‘D’, 23, 36))
6 mental representation(arithmetic, entity(shape(‘‘X ¼ X1þX2’’ ), parameters(36, 30, 6)))
6 mental representation(arithmetic, entity(shape(‘‘X ¼ X1þX2’’), parameters(23, 20, 3)))
7 is represented in world(arithmetic, split(36, 30, 6))
7 is represented in world(arithmetic, split(23, 20, 3))
8 mental representation(geometric, entity(shape(’-’), name( ‘A’, ‘B’), parameters(20, 3)))
8 mental representation(geometric, entity(shape(’-’), name(‘A’, ‘D’), parameters(30, 6)))
9 is represented in world(geometric, split(‘A’, ‘B’, 20, 3))
9 is represented in world(geometric, split(‘A’, ‘D’, 30, 6))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A11’), parameters(20, 30)))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A12’), parameters(20, 6)))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A21’), parameters(3, 30)))
10 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A22’), parameters(3, 6)))
11 is represented in world(geometric, area(‘A11’, 20, 30))
11 is represented in world(geometric, area(‘A12’, 20, 6))
11 is represented in world(geometric, area(‘A21’, 3, 30))
11 is represented in world(geometric, area(‘A22’, 3, 6))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(3, 6)))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(3, 30)))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(20, 6)))
12 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(20, 30)))
13 is represented in world(arithmetic, partial multiplication(‘A11’, 20, 30))
13 is represented in world(arithmetic, partial multiplication(‘A12’, 20, 6))
13 is represented in world(arithmetic, partial multiplication(‘A21’, 3, 30))
13 is represented in world(arithmetic, partial multiplication(‘A22’, 3, 6))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(3, 6, 18)))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(3, 30, 90)))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(20, 6, 120)))
14 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(20, 30, 600)))
15 is represented in world(arithmetic, multiplication solution(3, 6, 18))
15 is represented in world(arithmetic, multiplication solution(3, 30, 90))
15 is represented in world(arithmetic, multiplication solution(20, 6, 120))
15 is represented in world(arithmetic, multiplication solution(20, 30, 600))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A11’), area with number(600)))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A12’), area with number(120)))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A21’), area with number(90)))
16 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A22’), area with number(18)))
17 is represented in world(geometric, area with number(‘A11’, 600))
17 is represented in world(geometric, area with number(‘A12’, 120))
17 is represented in world(geometric, area with number(‘A21’, 90))
17 is represented in world(geometric, area with number(‘A22’, 18))

(Continued)
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18 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y’’), parameters(600, 120,
90, 18)))

19 is represented in world(arithmetic, addition(600, 120, 90, 18))
20 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y ¼ Z’’), parameters(600, 120,

90, 18, 828)))
21 is represented in world(arithmetic, addition solution(600, 120, 90, 18, 828))
22 mental representation(arithmetic, entity(shape(‘‘XX�YY ¼ ZZ’’), parameters(23, 36, 828)))
23 is represented in world(arithmetic, multiplication solution(23, 36, 828))

TRACE 2

Step Information derived

0 strategy profile: ari-mat-geo
0 available abstract skills: all skills except bs10
0 available mental skills: all skills except bs10
0 available physical skills: all skills
0 represent physically: all steps
1 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(23, 36)))
2 plan([bs24, bs25, bs9, bs26, bs13, bs14])
3 is represented in world(arithmetic, multiplication(23, 36))
4 mental representation(arithmetic, entity(shape(‘‘XY�’’), parameters(23, 36)))
5 is represented in world(arithmetic, symbolic multiplication(23, 36))
6 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(2, 36)))
6 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(3, 36)))
7 is represented in world(arithmetic, partial multiplication(‘A12’, 3, 36))
7 is represented in world(arithmetic, partial multiplication(‘A11’, 2, 36))
8 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(2, 36, 72)))
8 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(3, 36, 108)))
9 is represented in world(arithmetic, multiplication solution(2, 36, 72))
9 is represented in world(arithmetic, multiplication solution(3, 36, 108))
10 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y’’), parameters(108, 720, 0, 0)))
11 is represented in world(arithmetic, addition(108, 720, 0, 0))
12 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y ¼ Z’’), parameters(108, 720,

0, 0, 828)))
13 is represented in world(arithmetic, addition solution(108, 720, 0, 0, 828))
14 mental representation(arithmetic, entity(shape(‘‘XX�YY ¼ ZZ’’), parameters(23, 36, 828)))
15 is represented in world(arithmetic, multiplication solution(23, 36, 828))

TRACE 3

Step Information derived

0 strategy profile: mat-geo-ari
0 available abstract skills: all skills
0 available mental skills: all skills
0 available physical skills: all skills
0 represent physically: all steps
1 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(23, 36)))
2 is represented in world(arithmetic, multiplication(23, 36))
3 mental representation(material, entity(shape(‘‘[]’’), parameters(23, 36)))

(Continued)
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3 mental representation(material, entity(shape(‘‘[]’’), size(big), number(0)))
3 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(0)))
3 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(0)))
3 mental representation(material, entity(shape(‘‘[]’’, size(small), number(0)))
4 is represented in world(material, rectangle(‘A’, ‘B’, ‘C’, ‘D’, 23, 36))
4 is represented in world(material, block(big, 0))
4 is represented in world(material, block(medium h, 0))
4 is represented in world(material, block(medium v, 0))
4 is represented in world(material, block(small, 0))
5 mental representation(material, entity(shape(‘‘[]’’), size(big), number(1)))
6 is represented in world(material, block(big, 1))
7 mental representation(material, entity(shape(‘‘[]’’), size(big), number(2)))
8 is represented in world(material, block(big, 2))
9 mental representation(material, entity(shape(‘‘[]’’), size(big), number(3)))
10 is represented in world(material, block(big, 3))
11 mental representation(material, entity(shape(‘‘[]’’), size(big), number(4)))
12 is represented in world(material, block(big, 4))
13 mental representation(material, entity(shape(‘‘[]’’), size(big), number(5)))
14 is represented in world(material, block(big, 5))
15 mental representation(material, entity(shape(‘‘[]’’), size(big), number(6)))
16 is represented in world(material, block(big, 6))
17 mental representation(material, entity(shape(‘‘[]’’), size(big), total(6)))
18 is represented in world(material, total of blocks(big, 6))
19 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(1)))
20 is represented in world(material, block(medium h, 1))
21 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(2)))
22 is represented in world(material, block(medium h, 2))
23 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(3)))
24 is represented in world(material, block(medium h, 3))
25 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(4)))
26 is represented in world(material, block(medium h, 4))
27 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(5)))
28 is represented in world(material, block(medium h, 5))
29 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(6)))
30 is represented in world(material, block(medium h, 6))
31 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(7)))
32 is represented in world(material, block(medium h, 7))
33 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(8)))
34 is represented in world(material, block(medium h, 8))
35 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(9)))
36 is represented in world(material, block(medium h, 9))
37 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(10)))
38 is represented in world(material, block(medium h, 10))
39 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(11)))
40 is represented in world(material, block(medium h, 11))
41 mental representation(material, entity(shape(‘‘[]’’), size(medium h), number(12)))
42 is represented in world(material, block(medium h, 12))
43 mental representation(material, entity(shape(‘‘[]’’), size(medium h), total(12)))
44 is represented in world(material, total of blocks(medium h, 12))
45 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(1)))
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46 is represented in world(material, block(medium v, 1))
47 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(2)))
48 is represented in world(material, block(medium v, 2))
49 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(3)))
50 is represented in world(material, block(medium v, 3))
51 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(4)))
52 is represented in world(material, block(medium v, 4))
53 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(5)))
54 is represented in world(material, block(medium v, 5))
55 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(6)))
56 is represented in world(material, block(medium v, 6))
57 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(7)))
58 is represented in world(material, block(medium v, 7))
59 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(8)))
60 is represented in world(material, block(medium v, 8))
61 mental representation(material, entity(shape(‘‘[]’’), size(medium v), number(9)))
62 is represented in world(material, block(medium v, 9))
63 mental representation(material, entity(shape(‘‘[]’’), size(medium v), total(9)))
64 is represented in world(material, total of blocks(medium v, 9))
65 mental representation(material, entity(shape(‘‘[]’’), size(small), number(1)))
66 is represented in world(material, block(small, 1))
67 mental representation(material, entity(shape(‘‘[]’’), size(small), number(2)))
68 is represented in world(material, block(small, 2))
69 mental representation(material, entity(shape(‘‘[]’’), size(small), number(3)))
70 is represented in world(material, block(small, 3))
71 mental representation(material, entity(shape(‘‘[]’’), size(small), number(4)))
72 is represented in world(material, block(small, 4))
73 mental representation(material, entity(shape(‘‘[]’’), size(small), number(5)))
74 is represented in world(material, block(small, 5))
75 mental representation(material, entity(shape(‘‘[]’’), size(small), number(6)))
76 is represented in world(material, block(small, 6))
77 mental representation(material, entity(shape(‘‘[]’’), size(small), number(7)))
78 is represented in world(material, block(small, 7))
79 mental representation(material, entity(shape(‘‘[]’’), size(small), number(8)))
80 is represented in world(material, block(small, 8))
81 mental representation(material, entity(shape(‘‘[]’’), size(small), number(9)))
82 is represented in world(material, block(small, 9))
83 mental representation(material, entity(shape(‘‘[]’’), size(small), number(10)))
84 is represented in world(material, block(small, 10))
85 mental representation(material, entity(shape(‘‘[]’’), size(small), number(11)))
86 is represented in world(material, block(small, 11))
87 mental representation(material, entity(shape(‘‘[]’’), size(small), number(12)))
88 is represented in world(material, block(small, 12))
89 mental representation(material, entity(shape(‘‘[]’’), size(small), number(13)))
90 is represented in world(material, block(small, 13))
91 mental representation(material, entity(shape(‘‘[]’’), size(small), number(14)))
92 is represented in world(material, block(small, 14))
93 mental representation(material, entity(shape(‘‘[]’’), size(small), number(15)))
94 is represented in world(material, block(small, 15))
95 mental representation(material, entity(shape(‘‘[]’’), size(small), number(16)))
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96 is represented in world(material, block(small, 16))
97 mental representation(material, entity(shape(‘‘[]’’), size(small), number(17)))
98 is represented in world(material, block(small, 17))
99 mental representation(material, entity(shape(‘‘[]’’), size(small), number(18)))
100 is represented in world(material, block(small, 18))
101 mental representation(material, entity(shape(‘‘[]’’), size(small), total(18)))
102 is represented in world(material, total of blocks(small, 18))
103 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(18, 1)))
104 is represented in world(arithmetic, partial multiplication(‘‘A22’’, 18, 1))
105 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(18, 1, 18)))
106 is represented in world(arithmetic, multiplication solution(18, 1, 18))
107 mental representation(material, entity(shape(‘‘[]’’), size(small), area with number(18)))
108 is represented in world(material, area with number(small, 18))
109 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(9, 10)))
110 is represented in world(arithmetic, partial multiplication(‘‘A21’’, 9, 10))
111 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(9, 10, 90)))
112 is represented in world(arithmetic, multiplication solution(9, 10, 90))
113 mental representation(material, entity(shape(‘‘[]’’), size(medium v), area with number(90)))
114 is represented in world(material, area with number(medium v, 90))
115 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(12, 10)))
116 is represented in world(arithmetic, partial multiplication(‘‘A12’’, 12, 10))
117 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(12, 10, 120)))
118 is represented in world(arithmetic, multiplication solution(12, 10, 120))
119 mental representation(material, entity(shape(‘‘[]’’), size(medium h), area with number(120)))
120 is represented in world(material, area with number(medium h, 120))
121 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(6, 100)))
122 is represented in world(arithmetic, partial multiplication(‘‘A22’’, 6, 100))
123 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(6, 100, 600)))
124 is represented in world(arithmetic, multiplication solution(6, 100, 600))
125 mental representation(material, entity(shape(‘‘[]’’), size(big), area with number(600)))
126 is represented in world(material, area with number(big, 600))
127 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y’’), parameters(600, 120,

90, 18)))
128 is represented in world(arithmetic, addition(600, 120, 90, 18))
129 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y ¼ Z’’), parameters(600, 120,

90, 18, 828)))
130 is represented in world(arithmetic, addition solution(600, 120, 90, 18, 828))
131 mental representation(arithmetic, entity(shape(‘‘XX�YY ¼ ZZ’’), parameters(23, 36, 828)))
132 is represented in world(arithmetic, multiplication solution(23, 36, 828))

TRACE 4

Step Information derived

0 strategy profile: ari-geo-mat
0 available abstract skills: all skills except bs10
0 available mental skills: all skills except bs10 and bs25
0 available physical skills: all skills
0 represent physically: all steps
1 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(23, 36)))
2 plan([bs24, bs25, bs9, bs26, bs13, bs14])

(Continued)

1016 T. Bosse et al.



Step Information derived

3 is represented in world(arithmetic, multiplication(23, 36))
4 mental representation(arithmetic, entity(shape(‘‘XY�’’), parameters(23, 36)))
5 is represented in world(arithmetic, symbolic multiplication(23, 36))

=�mental part of bs25 fails � > create new plan �=
6 plan([bs7, bs1, bs2, bs4, bs5, bs9, bs3, bs6, bs13, bs14])
7 is represented in world(arithmetic, multiplication(23, 36))
8 mental representation(arithmetic, entity(shape(‘‘X ¼ X1þX2’’), parameters(36, 30, 6)))
8 mental representation(arithmetic, entity(shape(‘‘X ¼ X1þX2’’), parameters(23, 20, 3)))
9 is represented in world(arithmetic, split(36, 30, 6))
9 is represented in world(arithmetic, split(23, 20, 3))
10 mental representation(geometric, entity(shape(‘‘[]’’), parameters(23, 36)))
11 is represented in world(geometric, rectangle(‘A’, ‘B’, ‘C’, ‘D’, 23, 36))
12 mental representation(geometric, entity(shape(’’-’’), name(‘A’, ‘B’), parameters(20, 3)))
12 mental representation(geometric, entity(shape(’’-’’), name(‘A’, ‘D’), parameters(30, 6)))
13 is represented in world(geometric, split(‘A’, ‘B’, 20, 3))
13 is represented in world(geometric, split(‘A’, ‘D’, 30, 6))
14 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A11’), parameters(20, 30)))
14 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A12’), parameters(20, 6)))
14 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A21’), parameters(3, 30)))
14 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A22’), parameters(3, 6)))
15 is represented in world(geometric, area(‘A11’, 20, 30))
15 is represented in world(geometric, area(‘A12’, 20, 6))
15 is represented in world(geometric, area(‘A21’, 3, 30))
15 is represented in world(geometric, area(‘A22’, 3, 6))
16 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(3, 6)))
16 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(3, 30)))
16 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(20, 6)))
16 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(20, 30)))
17 is represented in world(arithmetic, partial multiplication(‘A11’, 20, 30))
17 is represented in world(arithmetic, partial multiplication(‘A12’, 20, 6))
17 is represented in world(arithmetic, partial multiplication(‘A21’, 3, 30))
17 is represented in world(arithmetic, partial multiplication(‘A22’, 3, 6))
18 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(3, 6, 18)))
18 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(3, 30, 90)))
18 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(20, 6, 120)))
18 mental representation(arithmetic, entity(shape(‘‘X�Y ¼ Z’’), parameters(20, 30, 600)))
19 is represented in world(arithmetic, multiplication solution(3, 6, 18))
19 is represented in world(arithmetic, multiplication solution(3, 30, 90))
19 is represented in world(arithmetic, multiplication solution(20, 6, 120))
19 is represented in world(arithmetic, multiplication solution(20, 30, 600))
20 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A11’), area with number(600)))
20 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A12’), area with number(120)))
20 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A21’), area with number(90)))
20 mental representation(geometric, entity(shape(‘‘[]’’), name(‘A22’), area with number(18)))
21 is represented in world(geometric, area with number(‘A11’, 600))
21 is represented in world(geometric, area with number(‘A12’, 120))
21 is represented in world(geometric, area with number(‘A21’, 90))
21 is represented in world(geometric, area with number(‘A22’, 18))
22 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y’’), parameters(600, 120,

90, 18)))
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23 is represented in world(arithmetic, addition(600, 120, 90, 18))
24 mental representation(arithmetic, entity(shape(‘‘VþWþXþ Y ¼ Z’’), parameters(600, 120,

90, 18, 828)))
25 is represented in world(arithmetic, addition solution(600, 120, 90, 18, 828))
26 mental representation(arithmetic, entity(shape(‘‘XX�YY ¼ ZZ’’), parameters(23, 36, 828)))
27 is represented in world(arithmetic, multiplication solution(23, 36, 828))

TRACE 5

Step Information Derived

0 strategy profile: ari-geo-mat
0 available abstract skills: all skills except bs7, bs15, bs24
0 available mental skills: all skills
0 available physical skills: all skills
0 represent physically: all steps
1 mental representation(arithmetic, entity(shape(‘‘X�Y’’), parameters(23, 36)))

=�no further derivations: agent fails to make a plan�=
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